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Abstract

We consider finite-dimensional many-body quantum systems described by time-independent
Hamiltonians and Markovian master equations, and present a systematic method for constructing
smaller-dimensional, reduced models that exactly reproduce the time evolution of a set of initial con-
ditions or observables of interest. Our approach exploits Krylov operator spaces and their extension
to operator algebras, and may be used to obtain reduced linear models of minimal dimension, well-
suited for simulation on classical computers, or reduced quantum models that preserve the struc-
tural constraints of admissible quantum dynamics, as required for simulation on quantum comput-
ers. Notably, weprove that the reduced quantum-dynamical generator is still in Lindblad form.
By introducing a new type of observable-dependent symmetries, we show that our method provides
a non-trivial generalization of techniques that leverage symmetries, unlocking new reduction op-
portunities. We quantitatively benchmark our method on paradigmatic open many-body systems of
relevance to condensed-matter and quantum-information physics. In particular, we demonstrate
how our reduced models can quantitatively describe decoherence dynamics in central-spin sys-
tems coupled to structured environments, magnetization transport in boundary-driven dissipative
spin chains, and unwanted error dynamics on information encoded in a noiseless quantum code.
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In many situations of fundamental and practical relevance, interest
may beapriori restricted to a subset of initial input states, and a sub-
set of output quantities that depend upon the final, time-evolved
state ρ(t) and may be directly associated to or required for com-
puting experimentally accessible properties.

We thus focus on finite dimensional systems H ≃ Cn of the type{
ρ̇(t) = L[ρ(t)]
Y (t) = O[ρ(t)]

(1)

where

L(ρ) = −i[H, ρ] +
∑

u

(
LuρL

†
u − 1

2
{L

†
uLu, ρ}

)
(2)

and O(·) =
∑

i Eitr(O
†
i ·) is a linear output functional (e.g. O = trB) and Oi are observables of interest.

Proposedmodel-reduction algorithm:

1. Compute the orthogonal to the non-observable subspace, N ⊥, from {Oi} as

N ⊥ = span{L†j(Oi), ∀i, ∀j = 0, . . . , n2 − 1}. (3)

We assume N ⊥ has full support: if this is not the case, we can immediately reduce the model
to the supporting subspace.

2. Compute the output algebra O ≡ alg(N ⊥). Given O , find the unitary change of base U that
brings O to their canonical Wedderburn decomposition

O = U

(⊕
k

B(HF,k) ⊗ 1G,k

)
U† ≃ Ǒ =

⊕
k

B(HF,k). (4)

3. Consider the CPTP orthogonal projection E|†O = E|O or conditional expectation

E|O(X) = U

(K−1⊕
k=0

trHG,k

[
(WkXW

†
k)(1dk

⊗ τk)
]

⊗ 1G,k

)
U†, ∀X ∈ B(H), (5)

with τk = 1G,k
dim HG,k

and compute its two CPTP factors J , R s.t. E|O = J R

R(X) =
⊕

k

trHG,k
(WkXW

†
k) =

⊕
k

XF,k = X̌, (6)

J (X̌) = U

(⊕
k

XF,k ⊗ τk

)
U†. (7)

4. Define the reduced generator Ľ ≡ J LR on Ǎ and the output function for the reduced model
Ǒ ≡ OJ . Then, for any initial condition ρ0 ∈ S, we have

OeLt(ρ0) = ǑeĽtR(ρ0), ∀t ≥ 0.

Reduced Lindblad dynamics

Theorem: Let A be a unital ∗-subalgebra of B(H), and let R and J denote the CPTP factorization
of J|A = J R, as defined above. Then for any Lindblad generator L, its reduction to A ,

Ľ ≡ RLJ ,

is also a Lindblad generator, that is, Ľ : Ǎ → Ǎ and {eĽt}t≥0 is a quantum dynamical semigroup.

Observable-dependent symmetries

A weak symmetry is a unitary operator S that leaves the dynamics invariant,

Tt(SρS†) = STt(ρ)S†, ∀t, ∀ρ ∈ D(H), (8)

or, equivalently, [S, L] = 0, in terms of the super-operator S(·) ≡ S · S†.
A strong symmetry is a unitary operator S that commutes with the Hamiltonian and all the noise
operators in L,

[H, S] = 0, [Lu, S] = 0, ∀u, (9)

where L ∼ (H, {Lu}) is an arbitrary representation of the semigroup generator. Equivalently, S(H) =
H and S(Lu) = Lu, ∀u.

For any weak symmetry operator S, the eigendecomposition of the superoperator S provides a de-
composition of the operator space, B(H) =

⊕
ν Bν , where Bν are operator-eigenspaces associated

to distinct eigenvalues ν, i.e., S(X) = νX for all X ∈ Bν . Since S and L commute, it follows that each
subspace Bν is L-invariant. In particular B1 is an L-invariant ∗-algebra.

Given a Lindblad generator L, a set of observables {Oi} and a unitary operator S ∈ B(H), with
associated super-operator S(·) = S ·S†, we say that S is a {Oi}-(observable-)dependent symmetry
(ODS) if

SL† n(Oi) = L† n(Oi), ∀n ∈ N, ∀i. (10)

Theorem: Let {Oi} ⊂ H(H) be a set of observables, and let L be a Lindblad generator. Then O =
alg{N ⊥} ⊊ B(H) if and only if there exists a non-trivial {Oi}-ODS for L. Furthermore, we have

O = alg{N ⊥} = CḠ ′,

where Ḡ is the largest group of ODS for the model.

Illustrative application: Dissipative central spin model

S
We consider a central spin system, S, coupled to a
“structured quantum environment,” namely, an inter-
acting spin bath, B, responsible for generally non-
Markovian dynamics on S, along with a bath inducing
Markovian dissipation on B alone. Explicitly, in what fol-
lows we label the central spin by 1, while the remaining
N − 1 ≡ NB spins correspond to bath spins, whereby
HB ≃ C2NB , HS ≃ C2, H = HS ⊗ HB .

The full dynamics for the joint system-bath state ρ(t) ∈ D(HS ⊗ HB) is determined by the joint
system-bath Hamiltonian which reads

HSB = 1
2

(
ω1σ

(1)
z + ησ

(1)
x

)
︸ ︷︷ ︸

HS

+ λ

4

(
2J2
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2
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)
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H
Ising
B

+ 1
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Axσ
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)
︸ ︷︷ ︸
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with Ju ≡ 1
2
∑N

k=2 σ
(k)
u denoting total bath-spin angu-

lar momentum operators, and by two types of dissi-
pations: either collective bath dissipation, Lc

B = ΛJ+,

or local dissipation on the bath-spins, Li
B = δσ

(i)
+ .

Weare only interested in reproducing the system’s
state (⇒ observable reduction): ρS(t) = trB[ρ(t)]
Howmuch are we reducing? The dimension of O =
G ′ scales with N3, while the dimension of B(H) is 4N .
Furthermore, in the blocks of the reduced Hamil-
tonian and noise operators, we observe that i) un-
der strong symmetry (case with collective dissipa-
tion) each block is invariant; while ii) under weak sym-
metry (case with local dissipation) there is communi-
cation between blocks in the diagonal due to non-zero off-diagonal blocks in the noise operators.
The dimension of the largest block grows with N2, meaning that we can efficiently parallelize the
simulation if the symmetry is strong.
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B,2 Ľeff
B,3

−1.50
−1.00
−0.50
0.00
0.50
1.00

0 1 2 3 4 5
0.7

0.8

0.9

1

〈 σ
(1

)
z

〉

N = 15
N = 25
N = 35
N = 45

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ωt

〈 σ
(1

)
z

〉

N = 16
N = 26
N = 36
N = 46

This fact allows us to simulate the reduced model
very efficiently and to reach high number of spins.
Representative results are shown on the right,
where the expectation values ⟨σ(1)

z ⟩ for odd and
even N are plotted against time in a setting with
no dissipation. Our results suggest that a “self-
decoupling” effect still occurs for λ ≫ ω, as man-
ifested by the fact that the spin polarization ap-
proximately oscillates periodically or freezes out
for even or odd N , respectively. For larger num-
ber of spins, however, the difference between odd
and even N tends to diminish.

To validate our procedure, we compare the numer-
ical solution of the full vs. reduced models also in
the collective dissipative setting. In the bottom left
figure we compare the central spin’s polarization
for the full (dotted line) and reduced model (solid
line), resulting in exact agreement, as expected. In-
terestingly, as the strength Λ of the dissipation increases, we observe a transition from a regime
where the trajectory reaches equilibrium slowly, with oscillation, to one where the equilibrium is
reached more rapidly, and with no oscillation – showing a non-monotonic behavior of the conver-
gence time τss, which we quantity in terms of the time taken for ⟨σ(1)

z (t)⟩ to remain confined within
5% of its asymptotic value. Considering a single initial condition (⇒ reachable or dual reduction),
e.g. ρ0 = |1⟩⟨1| ⊗ |0 . . . 0⟩⟨0 . . . 0|, we can further reduce the model and obtain an even easier model
to study to obtain an approximate curve of the non-monotonic behavior of τss ≈ ln(0.05)/2Λ2.
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Conclusion

We presented a general framework for exact model reduction of quantum dynamics, ensuring
CPTP. It has been applied to:
• (classical) Hidden Markov models [arXiv:2208.05968 – IEEE Trans. Aut. Contr.]
• (deterministic) Discrete-time case [arXiv:2307.06319 – IEEE Trans. Inf. Theo.]
• (deterministic) Continuous-time case [arXiv:2412.05102 –Quantum]
• (stochastic) Discrete-time quantum trajectories [arXiv:2403.12575 – IEEE Contr. Sys. Lett.]
• (stochastic) Continuous-time quantum trajectories [arXiv:2501.13885 – Annales Henri Poincaré]
Outlook: Approximate model reduction (in progress) and connection with adiabatic elimination
techniques (in progress).
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